Nuprl Lemma : set_leq_wf

[p:PosetSig]. ∀[a,b:|p|].  (a ≤ b ∈ ℙ)


Proof




Definitions occuring in Statement :  set_leq: a ≤ b set_car: |p| poset_sig: PosetSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  set_leq: a ≤ b uall: [x:A]. B[x] member: t ∈ T infix_ap: y
Lemmas referenced :  assert_wf set_le_wf set_car_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    (a  \mleq{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_04_10
Last ObjectModification: 2015_12_26-PM-11_28_45

Theory : sets_1


Home Index