Nuprl Lemma : strict_part_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b:T]. (strict_part(x,y.R[x;y];a;b) ∈ ℙ)
Proof
Definitions occuring in Statement :
strict_part: strict_part(x,y.R[x; y];a;b)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
strict_part: strict_part(x,y.R[x; y];a;b)
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s1;s2]
,
subtype_rel: A ⊆r B
Lemmas referenced :
subtype_rel_self,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
productEquality,
applyEquality,
hypothesisEquality,
hypothesis,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
universeEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
Error :inhabitedIsType,
isect_memberEquality,
Error :universeIsType,
because_Cache,
Error :functionIsType,
functionEquality,
cumulativity
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. \mforall{}[a,b:T]. (strict\_part(x,y.R[x;y];a;b) \mmember{} \mBbbP{})
Date html generated:
2019_06_20-PM-00_29_16
Last ObjectModification:
2018_09_26-AM-11_46_43
Theory : rel_1
Home
Index