Nuprl Lemma : assert_of_set_leq

[p:PosetSig]. ∀[a,b:|p|].  uiff(↑(a (≤bb);a ≤ b)


Proof




Definitions occuring in Statement :  set_leq: a ≤ b set_le: b set_car: |p| poset_sig: PosetSig assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y
Definitions unfolded in proof :  set_leq: a ≤ b uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a infix_ap: y implies:  Q prop:
Lemmas referenced :  assert_witness set_le_wf assert_wf set_car_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_functionElimination because_Cache productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:PosetSig].  \mforall{}[a,b:|p|].    uiff(\muparrow{}(a  (\mleq{}\msubb{})  b);a  \mleq{}  b)



Date html generated: 2016_05_15-PM-00_04_13
Last ObjectModification: 2015_12_26-PM-11_28_44

Theory : sets_1


Home Index