Step
*
1
2
1
of Lemma
assert_of_bpermr
1. s : DSet
2. a1 : |s|
3. as' : |s| List
4. a : ∀bs:|s| List. (↑(as' ≡b bs)
⇐⇒ as' ≡(|s|) bs)
5. bs : |s| List
⊢ (↑(a1 ∈b bs)) ∧ (as' ≡(|s|) (bs \ a1))
⇐⇒ [a1 / as'] ≡(|s|) bs
BY
{ ((Unfold `and` 0 THEN Fold `cand` 0) THEN ((D 0 THEN UnivCD) THENA Auto)) }
1
1. s : DSet
2. a1 : |s|
3. as' : |s| List
4. a : ∀bs:|s| List. (↑(as' ≡b bs)
⇐⇒ as' ≡(|s|) bs)
5. bs : |s| List
6. (↑(a1 ∈b bs)) c∧ (as' ≡(|s|) (bs \ a1))
⊢ [a1 / as'] ≡(|s|) bs
2
1. s : DSet
2. a1 : |s|
3. as' : |s| List
4. a : ∀bs:|s| List. (↑(as' ≡b bs)
⇐⇒ as' ≡(|s|) bs)
5. bs : |s| List
6. [a1 / as'] ≡(|s|) bs
⊢ (↑(a1 ∈b bs)) c∧ (as' ≡(|s|) (bs \ a1))
Latex:
Latex:
1. s : DSet
2. a1 : |s|
3. as' : |s| List
4. a : \mforall{}bs:|s| List. (\muparrow{}(as' \mequiv{}\msubb{} bs) \mLeftarrow{}{}\mRightarrow{} as' \mequiv{}(|s|) bs)
5. bs : |s| List
\mvdash{} (\muparrow{}(a1 \mmember{}\msubb{} bs)) \mwedge{} (as' \mequiv{}(|s|) (bs \mbackslash{} a1)) \mLeftarrow{}{}\mRightarrow{} [a1 / as'] \mequiv{}(|s|) bs
By
Latex:
((Unfold `and` 0 THEN Fold `cand` 0) THEN ((D 0 THEN UnivCD) THENA Auto))
Home
Index