Step
*
1
of Lemma
mon_itop_perm_invar
1. g : IAbMonoid
2. n : ℕ
3. E : ℕn ⟶ |g|
⊢ ∀p:Sym(n). ((Π 0 ≤ j < n. E[p.f j]) = (Π 0 ≤ j < n. E[j]) ∈ |g|)
BY
{ (Unfold `so_apply` 0 THEN ((BLemma `perm_induction_b` THENM UnivCD) THENA Auto)) }
1
1. g : IAbMonoid
2. n : ℕ
3. E : ℕn ⟶ |g|
⊢ (Π 0 ≤ j < n. E (id_perm().f j)) = (Π 0 ≤ j < n. E j) ∈ |g|
2
1. g : IAbMonoid
2. n : ℕ
3. E : ℕn ⟶ |g|
4. p : Sym(n)
5. (Π 0 ≤ j < n. E (p.f j)) = (Π 0 ≤ j < n. E j) ∈ |g|
6. i : ℕ+n
⊢ (Π 0 ≤ j < n. E (p O txpose_perm(i;0).f j)) = (Π 0 ≤ j < n. E j) ∈ |g|
Latex:
Latex:
1. g : IAbMonoid
2. n : \mBbbN{}
3. E : \mBbbN{}n {}\mrightarrow{} |g|
\mvdash{} \mforall{}p:Sym(n). ((\mPi{} 0 \mleq{} j < n. E[p.f j]) = (\mPi{} 0 \mleq{} j < n. E[j]))
By
Latex:
(Unfold `so\_apply` 0 THEN ((BLemma `perm\_induction\_b` THENM UnivCD) THENA Auto))
Home
Index