Step
*
1
of Lemma
mon_reduce_functionality_wrt_permr
1. g : IAbMonoid
2. xs : |g| List
3. ys : |g| List
4. xs ≡(|g|) ys
⊢ (Π xs) = (Π ys) ∈ |g|
BY
{ ((D 4 THEN D 5) THEN (RWH (LemmaC `mon_reduce_eq_itop`) 0 THENA Auto)) }
1
1. g : IAbMonoid
2. xs : |g| List
3. ys : |g| List
4. ||xs|| = ||ys|| ∈ ℤ
5. p : Sym(||xs||)
6. ∀i:ℕ||xs||. (xs[p.f i] = ys[i] ∈ |g|)
⊢ (Π 0 ≤ i < ||xs||. xs[i]) = (Π 0 ≤ i < ||ys||. ys[i]) ∈ |g|
Latex:
Latex:
1. g : IAbMonoid
2. xs : |g| List
3. ys : |g| List
4. xs \mequiv{}(|g|) ys
\mvdash{} (\mPi{} xs) = (\mPi{} ys)
By
Latex:
((D 4 THEN D 5) THEN (RWH (LemmaC `mon\_reduce\_eq\_itop`) 0 THENA Auto))
Home
Index