Step
*
1
of Lemma
sym_grp_is_swaps
1. p : Sym(0)
⊢ ∃abs:(ℕ0 × ℕ0) List. (p = (Π map(λab.let a,b = ab in txpose_perm(a;b);abs)) ∈ Sym(0))
BY
{ (With [] (D 0) THENA Auto) }
1
1. p : Sym(0)
⊢ p = (Π map(λab.let a,b = ab in txpose_perm(a;b);[])) ∈ Sym(0)
Latex:
Latex:
1. p : Sym(0)
\mvdash{} \mexists{}abs:(\mBbbN{}0 \mtimes{} \mBbbN{}0) List. (p = (\mPi{} map(\mlambda{}ab.let a,b = ab in txpose\_perm(a;b);abs)))
By
Latex:
(With [] (D 0) THENA Auto)
Home
Index