Nuprl Lemma : sym_grp_is_swaps
∀n:ℕ. ∀p:Sym(n). ∃abs:(ℕn × ℕn) List. (p = (Π map(λab.let a,b = ab in txpose_perm(a;b);abs)) ∈ Sym(n))
Proof
Definitions occuring in Statement :
mon_reduce: mon_reduce,
txpose_perm: txpose_perm,
sym_grp: Sym(n)
,
perm_igrp: perm_igrp(T)
,
map: map(f;as)
,
list: T List
,
int_seg: {i..j-}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
lambda: λx.A[x]
,
spread: spread def,
product: x:A × B[x]
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
sym_grp: Sym(n)
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
prop: ℙ
,
nat: ℕ
,
perm_igrp: perm_igrp(T)
,
mk_igrp: mk_igrp(T;op;id;inv)
,
grp_car: |g|
,
pi1: fst(t)
,
top: Top
,
mon_reduce: mon_reduce,
grp_id: e
,
pi2: snd(t)
,
int_upper: {i...}
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
subtract: n - m
,
true: True
,
guard: {T}
,
lelt: i ≤ j < k
,
perm: Perm(T)
,
sq_type: SQType(T)
,
squash: ↓T
,
compose: f o g
,
igrp: IGroup
,
imon: IMonoid
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
label: ...$L... t
,
infix_ap: x f y
,
grp_op: *
Lemmas referenced :
perm_wf,
int_seg_wf,
subtract_wf,
list_wf,
list_subtype_base,
product_subtype_base,
set_subtype_base,
lelt_wf,
int_subtype_base,
istype-int,
less_than_wf,
primrec-wf2,
all_wf,
exists_wf,
equal_wf,
mon_reduce_wf,
perm_igrp_wf,
map_wf,
grp_car_wf,
txpose_perm_wf,
nat_wf,
nil_wf,
map_nil_lemma,
istype-void,
reduce_nil_lemma,
zero_sym_grp,
restrict_perm_using_txpose,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
le_wf,
cons_wf,
subtype_rel_list,
subtype_rel_product,
int_seg_subtype,
istype-false,
not-le-2,
condition-implies-le,
add-associates,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-mul-special,
zero-mul,
add-zero,
add-commutes,
le-add-cancel2,
comp_perm_wf,
int_seg_properties,
extend_perm_wf,
itermSubtract_wf,
int_term_value_subtract_lemma,
subtype_base_sq,
zero-add,
squash_wf,
true_wf,
istype-universe,
extend_perm_over_itcomp,
subtype_rel_self,
iff_weakening_equal,
map_map,
subtract-add-cancel,
imon_wf,
fun_thru_spread,
extend_perm_over_txpose,
map_cons_lemma,
reduce_cons_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
thin,
universeIsType,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
isectElimination,
natural_numberEquality,
hypothesis,
rename,
setElimination,
hypothesisEquality,
sqequalRule,
functionIsType,
productIsType,
productEquality,
equalityIsType3,
inhabitedIsType,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
independent_isectElimination,
lambdaEquality_alt,
because_Cache,
intEquality,
setIsType,
productElimination,
dependent_pairFormation_alt,
isect_memberEquality_alt,
voidElimination,
dependent_set_memberEquality_alt,
unionElimination,
approximateComputation,
independent_functionElimination,
int_eqEquality,
independent_pairFormation,
independent_pairEquality,
addEquality,
minusEquality,
multiplyEquality,
instantiate,
cumulativity,
equalityTransitivity,
equalitySymmetry,
imageElimination,
universeEquality,
imageMemberEquality,
hyp_replacement,
spreadEquality
Latex:
\mforall{}n:\mBbbN{}. \mforall{}p:Sym(n). \mexists{}abs:(\mBbbN{}n \mtimes{} \mBbbN{}n) List. (p = (\mPi{} map(\mlambda{}ab.let a,b = ab in txpose\_perm(a;b);abs)))
Date html generated:
2019_10_16-PM-01_01_57
Last ObjectModification:
2018_10_08-PM-05_43_30
Theory : list_2
Home
Index