Nuprl Lemma : sym_grp_is_swaps

n:ℕ. ∀p:Sym(n).  ∃abs:(ℕn × ℕn) List. (p (Π map(λab.let a,b ab in txpose_perm(a;b);abs)) ∈ Sym(n))


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce txpose_perm: txpose_perm sym_grp: Sym(n) perm_igrp: perm_igrp(T) map: map(f;as) list: List int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] lambda: λx.A[x] spread: spread def product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} prop: nat: perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_car: |g| pi1: fst(t) top: Top mon_reduce: mon_reduce grp_id: e pi2: snd(t) int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True guard: {T} lelt: i ≤ j < k perm: Perm(T) sq_type: SQType(T) squash: T compose: g igrp: IGroup imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] label: ...$L... t infix_ap: y grp_op: *
Lemmas referenced :  perm_wf int_seg_wf subtract_wf list_wf list_subtype_base product_subtype_base set_subtype_base lelt_wf int_subtype_base istype-int less_than_wf primrec-wf2 all_wf exists_wf equal_wf mon_reduce_wf perm_igrp_wf map_wf grp_car_wf txpose_perm_wf nat_wf nil_wf map_nil_lemma istype-void reduce_nil_lemma zero_sym_grp restrict_perm_using_txpose decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf cons_wf subtype_rel_list subtype_rel_product int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 comp_perm_wf int_seg_properties extend_perm_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq zero-add squash_wf true_wf istype-universe extend_perm_over_itcomp subtype_rel_self iff_weakening_equal map_map subtract-add-cancel imon_wf fun_thru_spread extend_perm_over_txpose map_cons_lemma reduce_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination natural_numberEquality hypothesis rename setElimination hypothesisEquality sqequalRule functionIsType productIsType productEquality equalityIsType3 inhabitedIsType baseApply closedConclusion baseClosed applyEquality independent_isectElimination lambdaEquality_alt because_Cache intEquality setIsType productElimination dependent_pairFormation_alt isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt unionElimination approximateComputation independent_functionElimination int_eqEquality independent_pairFormation independent_pairEquality addEquality minusEquality multiplyEquality instantiate cumulativity equalityTransitivity equalitySymmetry imageElimination universeEquality imageMemberEquality hyp_replacement spreadEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n).    \mexists{}abs:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (p  =  (\mPi{}  map(\mlambda{}ab.let  a,b  =  ab  in  txpose\_perm(a;b);abs)))



Date html generated: 2019_10_16-PM-01_01_57
Last ObjectModification: 2018_10_08-PM-05_43_30

Theory : list_2


Home Index