Nuprl Lemma : sym_grp_is_swaps
∀n:ℕ. ∀p:Sym(n).  ∃abs:(ℕn × ℕn) List. (p = (Π map(λab.let a,b = ab in txpose_perm(a;b);abs)) ∈ Sym(n))
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
txpose_perm: txpose_perm, 
sym_grp: Sym(n)
, 
perm_igrp: perm_igrp(T)
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sym_grp: Sym(n)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
nat: ℕ
, 
perm_igrp: perm_igrp(T)
, 
mk_igrp: mk_igrp(T;op;id;inv)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
top: Top
, 
mon_reduce: mon_reduce, 
grp_id: e
, 
pi2: snd(t)
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
perm: Perm(T)
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
compose: f o g
, 
igrp: IGroup
, 
imon: IMonoid
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
label: ...$L... t
, 
infix_ap: x f y
, 
grp_op: *
Lemmas referenced : 
perm_wf, 
int_seg_wf, 
subtract_wf, 
list_wf, 
list_subtype_base, 
product_subtype_base, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
istype-int, 
less_than_wf, 
primrec-wf2, 
all_wf, 
exists_wf, 
equal_wf, 
mon_reduce_wf, 
perm_igrp_wf, 
map_wf, 
grp_car_wf, 
txpose_perm_wf, 
nat_wf, 
nil_wf, 
map_nil_lemma, 
istype-void, 
reduce_nil_lemma, 
zero_sym_grp, 
restrict_perm_using_txpose, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
cons_wf, 
subtype_rel_list, 
subtype_rel_product, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
comp_perm_wf, 
int_seg_properties, 
extend_perm_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
zero-add, 
squash_wf, 
true_wf, 
istype-universe, 
extend_perm_over_itcomp, 
subtype_rel_self, 
iff_weakening_equal, 
map_map, 
subtract-add-cancel, 
imon_wf, 
fun_thru_spread, 
extend_perm_over_txpose, 
map_cons_lemma, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
rename, 
setElimination, 
hypothesisEquality, 
sqequalRule, 
functionIsType, 
productIsType, 
productEquality, 
equalityIsType3, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
because_Cache, 
intEquality, 
setIsType, 
productElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
independent_pairFormation, 
independent_pairEquality, 
addEquality, 
minusEquality, 
multiplyEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
hyp_replacement, 
spreadEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n).    \mexists{}abs:(\mBbbN{}n  \mtimes{}  \mBbbN{}n)  List.  (p  =  (\mPi{}  map(\mlambda{}ab.let  a,b  =  ab  in  txpose\_perm(a;b);abs)))
Date html generated:
2019_10_16-PM-01_01_57
Last ObjectModification:
2018_10_08-PM-05_43_30
Theory : list_2
Home
Index