Nuprl Lemma : extend_perm_over_itcomp

n:ℕ. ∀ps:Sym(n) List.  (↑{n}(Π ps) (Π map(λp.↑{n}(p);ps)) ∈ Sym(n 1))


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce extend_perm: {n}(p) sym_grp: Sym(n) perm_igrp: perm_igrp(T) map: map(f;as) list: List int_seg: {i..j-} nat: all: x:A. B[x] lambda: λx.A[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: sym_grp: Sym(n) or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B mon_reduce: mon_reduce perm_igrp: perm_igrp(T) mk_igrp: mk_igrp(T;op;id;inv) grp_id: e pi2: snd(t) pi1: fst(t) infix_ap: y grp_op: * igrp: IGroup grp_car: |g| perm: Perm(T)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf perm_wf int_seg_wf list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le nat_wf reduce_nil_lemma map_nil_lemma extend_perm_over_id reduce_cons_lemma map_cons_lemma equal_wf extend_perm_wf comp_perm_wf mon_reduce_wf perm_igrp_wf subtype_rel_self extend_perm_over_comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality hyp_replacement addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}ps:Sym(n)  List.    (\muparrow{}\{n\}(\mPi{}  ps)  =  (\mPi{}  map(\mlambda{}p.\muparrow{}\{n\}(p);ps)))



Date html generated: 2019_10_16-PM-01_01_51
Last ObjectModification: 2018_10_08-PM-00_44_44

Theory : list_2


Home Index