Nuprl Lemma : extend_perm_over_itcomp
∀n:ℕ. ∀ps:Sym(n) List.  (↑{n}(Π ps) = (Π map(λp.↑{n}(p);ps)) ∈ Sym(n + 1))
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
extend_perm: ↑{n}(p)
, 
sym_grp: Sym(n)
, 
perm_igrp: perm_igrp(T)
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
sym_grp: Sym(n)
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
mon_reduce: mon_reduce, 
perm_igrp: perm_igrp(T)
, 
mk_igrp: mk_igrp(T;op;id;inv)
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
, 
grp_op: *
, 
igrp: IGroup
, 
grp_car: |g|
, 
perm: Perm(T)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
perm_wf, 
int_seg_wf, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
nat_wf, 
reduce_nil_lemma, 
map_nil_lemma, 
extend_perm_over_id, 
reduce_cons_lemma, 
map_cons_lemma, 
equal_wf, 
extend_perm_wf, 
comp_perm_wf, 
mon_reduce_wf, 
perm_igrp_wf, 
subtype_rel_self, 
extend_perm_over_comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
hyp_replacement, 
addEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}ps:Sym(n)  List.    (\muparrow{}\{n\}(\mPi{}  ps)  =  (\mPi{}  map(\mlambda{}p.\muparrow{}\{n\}(p);ps)))
Date html generated:
2019_10_16-PM-01_01_51
Last ObjectModification:
2018_10_08-PM-00_44_44
Theory : list_2
Home
Index