Nuprl Lemma : extend_perm_over_comp

n:ℕ. ∀p,q:Sym(n).  (↑{n}(p q) = ↑{n}(p) O ↑{n}(q) ∈ Sym(n 1))


Proof




Definitions occuring in Statement :  extend_perm: {n}(p) sym_grp: Sym(n) comp_perm: comp_perm nat: all: x:A. B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] nat: perm: Perm(T) prop: extend_perm: {n}(p) comp_perm: comp_perm mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  perm_wf int_seg_wf nat_wf inv_funs_wf perm_f_wf perm_b_wf perm_properties perm_sig_wf mk_perm_wf compose_wf extend_permf_wf equal_wf squash_wf true_wf istype-universe extend_permf_over_comp subtype_rel_self iff_weakening_equal extend_perm_wf comp_perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality setElimination rename dependent_set_memberEquality_alt addEquality because_Cache sqequalRule applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality functionIsType imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p,q:Sym(n).    (\muparrow{}\{n\}(p  O  q)  =  \muparrow{}\{n\}(p)  O  \muparrow{}\{n\}(q))



Date html generated: 2019_10_16-PM-01_00_02
Last ObjectModification: 2018_10_08-AM-09_12_47

Theory : perms_1


Home Index