Nuprl Lemma : extend_perm_over_id
∀n:ℕ. (↑{n}(id_perm()) = id_perm() ∈ Sym(n + 1))
Proof
Definitions occuring in Statement : 
extend_perm: ↑{n}(p)
, 
sym_grp: Sym(n)
, 
id_perm: id_perm()
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sym_grp: Sym(n)
, 
perm: Perm(T)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
id_perm: id_perm()
, 
extend_perm: ↑{n}(p)
, 
true: True
, 
mk_perm: mk_perm(f;b)
, 
perm_f: p.f
, 
pi1: fst(t)
, 
perm_b: p.b
, 
pi2: snd(t)
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
nat_wf, 
inv_funs_wf, 
int_seg_wf, 
perm_f_wf, 
perm_b_wf, 
perm_sig_wf, 
mk_perm_wf, 
identity_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
extend_permf_over_id, 
subtype_rel_self, 
iff_weakening_equal, 
id_perm_wf, 
perm_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
dependent_set_memberEquality_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
dependent_functionElimination, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
inhabitedIsType, 
universeEquality, 
functionIsType, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  (\muparrow{}\{n\}(id\_perm())  =  id\_perm())
Date html generated:
2019_10_16-PM-00_59_59
Last ObjectModification:
2018_10_08-AM-09_14_23
Theory : perms_1
Home
Index