Nuprl Lemma : extend_perm_over_id

n:ℕ(↑{n}(id_perm()) id_perm() ∈ Sym(n 1))


Proof




Definitions occuring in Statement :  extend_perm: {n}(p) sym_grp: Sym(n) id_perm: id_perm() nat: all: x:A. B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) perm: Perm(T) uall: [x:A]. B[x] nat: prop: id_perm: id_perm() extend_perm: {n}(p) true: True mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  nat_wf inv_funs_wf int_seg_wf perm_f_wf perm_b_wf perm_sig_wf mk_perm_wf identity_wf equal_wf squash_wf true_wf istype-universe extend_permf_over_id subtype_rel_self iff_weakening_equal id_perm_wf perm_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid hypothesis dependent_set_memberEquality_alt sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality because_Cache dependent_functionElimination equalitySymmetry sqequalRule applyEquality lambdaEquality_alt imageElimination equalityTransitivity inhabitedIsType universeEquality functionIsType imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  (\muparrow{}\{n\}(id\_perm())  =  id\_perm())



Date html generated: 2019_10_16-PM-00_59_59
Last ObjectModification: 2018_10_08-AM-09_14_23

Theory : perms_1


Home Index