Nuprl Lemma : extend_perm_over_txpose

n:ℕ. ∀i,j:ℕn.  (↑{n}(txpose_perm(i;j)) txpose_perm(i;j) ∈ Sym(n 1))


Proof




Definitions occuring in Statement :  extend_perm: {n}(p) txpose_perm: txpose_perm sym_grp: Sym(n) int_seg: {i..j-} nat: all: x:A. B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: sym_grp: Sym(n) perm: Perm(T) prop: txpose_perm: txpose_perm extend_perm: {n}(p) mk_perm: mk_perm(f;b) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) squash: T true: True guard: {T} int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top le: A ≤ B less_than: a < b
Lemmas referenced :  perm_sig_wf perm_properties lelt_wf decidable__lt le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties txpose_perm_wf extend_permf_over_swap true_wf squash_wf mk_perm_wf perm_b_wf perm_f_wf inv_funs_wf nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality dependent_set_memberEquality addEquality dependent_functionElimination equalitySymmetry sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity functionEquality universeEquality imageMemberEquality baseClosed productElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache setEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (\muparrow{}\{n\}(txpose\_perm(i;j))  =  txpose\_perm(i;j))



Date html generated: 2016_05_16-AM-07_31_31
Last ObjectModification: 2016_01_16-PM-10_05_57

Theory : perms_1


Home Index