Nuprl Lemma : zero_sym_grp

p:Sym(0). (p id_perm() ∈ Sym(0))


Proof




Definitions occuring in Statement :  sym_grp: Sym(n) id_perm: id_perm() all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sym_grp: Sym(n) uall: [x:A]. B[x] perm: Perm(T) prop: perm_sig: perm_sig(T) id_perm: id_perm() mk_perm: mk_perm(f;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B subtype_rel: A ⊆B uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt lelt_wf decidable__equal_int int_seg_properties perm_b_wf perm_f_wf inv_funs_wf perm_properties int_seg_wf perm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality setElimination rename dependent_set_memberEquality productElimination dependent_pairEquality functionExtensionality because_Cache applyEquality independent_pairFormation sqequalRule independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll unionElimination functionEquality

Latex:
\mforall{}p:Sym(0).  (p  =  id\_perm())



Date html generated: 2016_05_16-AM-07_32_10
Last ObjectModification: 2016_01_16-PM-10_06_31

Theory : perms_1


Home Index