Step
*
of Lemma
mod_mssum_swap
∀r:Rng. ∀m:r-Module. ∀s,s':DSet. ∀f:|s| ⟶ |s'| ⟶ m.car. ∀a:MSet{s}. ∀b:MSet{s'}.
((Σm x ∈ a. Σm y ∈ b. f[x;y]) = (Σm y ∈ b. Σm x ∈ a. f[x;y]) ∈ m.car)
BY
{ ProveSpecializedLemma `mset_for_swap` 2 [parm{i};m↓grp] ((TryC (FoldsC ``mod_mssum``) ANDTHENC AbReduceC)) }
Latex:
Latex:
\mforall{}r:Rng. \mforall{}m:r-Module. \mforall{}s,s':DSet. \mforall{}f:|s| {}\mrightarrow{} |s'| {}\mrightarrow{} m.car. \mforall{}a:MSet\{s\}. \mforall{}b:MSet\{s'\}.
((\mSigma{}m x \mmember{} a. \mSigma{}m y \mmember{} b. f[x;y]) = (\mSigma{}m y \mmember{} b. \mSigma{}m x \mmember{} a. f[x;y]))
By
Latex:
ProveSpecializedLemma `mset\_for\_swap` 2 [parm\{i\};m\mdownarrow{}grp
] ((TryC (FoldsC ``mod\_mssum``) ANDTHENC AbReduceC))
Home
Index