Nuprl Lemma : bmsexists_char_rw
∀s:DSet. ∀f:|s| ⟶ 𝔹. ∀a:MSet{s}.  {(∃x:|s|. ((↑(x ∈b a)) ∧ (↑f[x]))) 
⇒ (↑(∃b{s} x ∈ a. f[x]))}
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_mem: mset_mem, 
mset: MSet{s}
, 
assert: ↑b
, 
bool: 𝔹
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
bor_mon: <𝔹,∨b>
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
guard: {T}
Lemmas referenced : 
bmsexists_char
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lemma_by_obid
Latex:
\mforall{}s:DSet.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}a:MSet\{s\}.    \{(\mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  \mwedge{}  (\muparrow{}f[x])))  {}\mRightarrow{}  (\muparrow{}(\mexists{}\msubb{}\{s\}  x  \mmember{}  a.  f[x]))\}
Date html generated:
2016_05_16-AM-07_48_06
Last ObjectModification:
2015_12_28-PM-06_02_41
Theory : mset
Home
Index