Nuprl Lemma : bmsexists_char
∀s:DSet. ∀f:|s| ⟶ 𝔹. ∀a:MSet{s}.  ((∃x:|s|. ((↑(x ∈b a)) ∧ (↑f[x]))) ⇒ (↑(∃b{s} x ∈ a. f[x])))
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset_mem: mset_mem, 
mset: MSet{s}, 
assert: ↑b, 
bool: 𝔹, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
bor_mon: <𝔹,∨b>, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
mset: MSet{s}, 
bor_mon: <𝔹,∨b>, 
grp_car: |g|, 
pi1: fst(t), 
quotient: x,y:A//B[x; y], 
squash: ↓T, 
mset_for: mset_for, 
mset_mem: mset_mem, 
bexists: bexists, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
sq_stable__all, 
exists_wf, 
set_car_wf, 
assert_wf, 
mset_mem_wf, 
mset_for_wf, 
bor_mon_wf, 
sq_stable_from_decidable, 
decidable__assert, 
squash_wf, 
abmonoid_subtype_iabmonoid, 
bool_wf, 
list_wf, 
permr_wf, 
equal_wf, 
equal-wf-base, 
mset_wf, 
dset_wf, 
bexists_char, 
mem_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_functionElimination, 
pointwiseFunctionalityForEquality, 
functionEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}s:DSet.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}a:MSet\{s\}.    ((\mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  \mwedge{}  (\muparrow{}f[x])))  {}\mRightarrow{}  (\muparrow{}(\mexists{}\msubb{}\{s\}  x  \mmember{}  a.  f[x])))
 Date html generated: 
2017_10_01-AM-09_59_24
 Last ObjectModification: 
2017_03_03-PM-01_00_34
Theory : mset
Home
Index