Nuprl Lemma : bmsexists_char

s:DSet. ∀f:|s| ⟶ 𝔹. ∀a:MSet{s}.  ((∃x:|s|. ((↑(x ∈b a)) ∧ (↑f[x])))  (↑(∃b{s} x ∈ a. f[x])))


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mem: mset_mem mset: MSet{s} assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] bor_mon: <𝔹,∨b> dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T dset: DSet so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B implies:  Q sq_stable: SqStable(P) mset: MSet{s} bor_mon: <𝔹,∨b> grp_car: |g| pi1: fst(t) quotient: x,y:A//B[x; y] squash: T mset_for: mset_for mset_mem: mset_mem bexists: bexists iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sq_stable__all exists_wf set_car_wf assert_wf mset_mem_wf mset_for_wf bor_mon_wf sq_stable_from_decidable decidable__assert squash_wf abmonoid_subtype_iabmonoid bool_wf list_wf permr_wf equal_wf equal-wf-base mset_wf dset_wf bexists_char mem_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality dependent_functionElimination applyEquality functionExtensionality because_Cache independent_functionElimination pointwiseFunctionalityForEquality functionEquality pertypeElimination productElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed

Latex:
\mforall{}s:DSet.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.  \mforall{}a:MSet\{s\}.    ((\mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  a))  \mwedge{}  (\muparrow{}f[x])))  {}\mRightarrow{}  (\muparrow{}(\mexists{}\msubb{}\{s\}  x  \mmember{}  a.  f[x])))



Date html generated: 2017_10_01-AM-09_59_24
Last ObjectModification: 2017_03_03-PM-01_00_34

Theory : mset


Home Index