Nuprl Lemma : bexists_char

s:DSet. ∀as:|s| List. ∀f:|s| ⟶ 𝔹.  (↑(∃bx(:|s|) ∈ as. f[x]) ⇐⇒ ∃x:|s|. ((↑(x ∈b as)) ∧ (↑f[x])))


Proof




Definitions occuring in Statement :  bexists: bexists mem: a ∈b as list: List assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] prop: and: P ∧ Q implies:  Q top: Top assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q exists: x:A. B[x] rev_implies:  Q false: False or: P ∨ Q infix_ap: y guard: {T} cand: c∧ B
Lemmas referenced :  set_car_wf bool_wf list_wf dset_wf list_induction iff_wf assert_wf bexists_wf exists_wf mem_wf bexists_nil_lemma istype-void mem_nil_lemma bexists_cons_lemma mem_cons_lemma bor_wf or_wf set_eq_wf equal_wf iff_weakening_uiff assert_of_bor iff_transitivity assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality_alt dependent_functionElimination because_Cache applyEquality productEquality independent_functionElimination isect_memberEquality_alt voidElimination productIsType inhabitedIsType independent_pairFormation productElimination unionIsType equalityIsType1 dependent_pairFormation_alt unionElimination inlFormation_alt inrFormation_alt promote_hyp hyp_replacement equalitySymmetry applyLambdaEquality

Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}\msubb{}x(:|s|)  \mmember{}  as.  f[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  \mwedge{}  (\muparrow{}f[x])))



Date html generated: 2019_10_16-PM-01_03_31
Last ObjectModification: 2018_10_08-AM-11_25_30

Theory : list_2


Home Index