Nuprl Lemma : bexists_char
∀s:DSet. ∀as:|s| List. ∀f:|s| ⟶ 𝔹.  (↑(∃bx(:|s|) ∈ as. f[x]) 
⇐⇒ ∃x:|s|. ((↑(x ∈b as)) ∧ (↑f[x])))
Proof
Definitions occuring in Statement : 
bexists: bexists, 
mem: a ∈b as
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dset: DSet
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
or: P ∨ Q
, 
infix_ap: x f y
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
set_car_wf, 
bool_wf, 
list_wf, 
dset_wf, 
list_induction, 
iff_wf, 
assert_wf, 
bexists_wf, 
exists_wf, 
mem_wf, 
bexists_nil_lemma, 
istype-void, 
mem_nil_lemma, 
bexists_cons_lemma, 
mem_cons_lemma, 
bor_wf, 
or_wf, 
set_eq_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_of_bor, 
iff_transitivity, 
assert_of_dset_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
productEquality, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
inhabitedIsType, 
independent_pairFormation, 
productElimination, 
unionIsType, 
equalityIsType1, 
dependent_pairFormation_alt, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
promote_hyp, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality
Latex:
\mforall{}s:DSet.  \mforall{}as:|s|  List.  \mforall{}f:|s|  {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}\msubb{}x(:|s|)  \mmember{}  as.  f[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:|s|.  ((\muparrow{}(x  \mmember{}\msubb{}  as))  \mwedge{}  (\muparrow{}f[x])))
Date html generated:
2019_10_16-PM-01_03_31
Last ObjectModification:
2018_10_08-AM-11_25_30
Theory : list_2
Home
Index