Nuprl Lemma : bexists_nil_lemma
∀f,T:Top.  (∃bx(:T) ∈ []. f[x] ~ ff)
Proof
Definitions occuring in Statement : 
bexists: bexists, 
nil: []
, 
bfalse: ff
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
bexists: bexists, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
bor_mon: <𝔹,∨b>
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
top_wf, 
mon_for_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}f,T:Top.    (\mexists{}\msubb{}x(:T)  \mmember{}  [].  f[x]  \msim{}  ff)
Date html generated:
2016_05_16-AM-07_38_07
Last ObjectModification:
2015_12_28-PM-05_44_33
Theory : list_2
Home
Index