Nuprl Lemma : bexists_nil_lemma

f,T:Top.  (∃bx(:T) ∈ []. f[x] ff)


Proof




Definitions occuring in Statement :  bexists: bexists nil: [] bfalse: ff top: Top so_apply: x[s] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bexists: bexists so_lambda: λ2x.t[x] top: Top so_apply: x[s] bor_mon: <𝔹,∨b> grp_id: e pi2: snd(t) pi1: fst(t)
Lemmas referenced :  top_wf mon_for_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}f,T:Top.    (\mexists{}\msubb{}x(:T)  \mmember{}  [].  f[x]  \msim{}  ff)



Date html generated: 2016_05_16-AM-07_38_07
Last ObjectModification: 2015_12_28-PM-05_44_33

Theory : list_2


Home Index