Nuprl Lemma : bexists_wf

A:Type. ∀as:A List. ∀f:A ⟶ 𝔹.  (∃bx(:A) ∈ as. f[x] ∈ 𝔹)


Proof




Definitions occuring in Statement :  bexists: bexists list: List bool: 𝔹 so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T bexists: bexists subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] bor_mon: <𝔹,∨b> grp_car: |g| pi1: fst(t) abmonoid: AbMon mon: Mon
Lemmas referenced :  mon_for_wf bor_mon_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf bool_wf grp_car_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis applyEquality instantiate isectElimination independent_isectElimination sqequalRule hypothesisEquality lambdaEquality setElimination rename functionEquality universeEquality

Latex:
\mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  \mBbbB{}.    (\mexists{}\msubb{}x(:A)  \mmember{}  as.  f[x]  \mmember{}  \mBbbB{})



Date html generated: 2016_05_16-AM-07_38_05
Last ObjectModification: 2015_12_28-PM-05_44_38

Theory : list_2


Home Index