Nuprl Lemma : bexists_wf
∀A:Type. ∀as:A List. ∀f:A ⟶ 𝔹.  (∃bx(:A) ∈ as. f[x] ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bexists: bexists, 
list: T List
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
bexists: bexists, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bor_mon: <𝔹,∨b>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
abmonoid: AbMon
, 
mon: Mon
Lemmas referenced : 
mon_for_wf, 
bor_mon_wf, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
bool_wf, 
grp_car_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
applyEquality, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
functionEquality, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  \mBbbB{}.    (\mexists{}\msubb{}x(:A)  \mmember{}  as.  f[x]  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-07_38_05
Last ObjectModification:
2015_12_28-PM-05_44_38
Theory : list_2
Home
Index