Nuprl Lemma : bexists_cons_lemma
∀f,as,a,T:Top.  (∃bx(:T) ∈ [a / as]. f[x] ~ f[a] ∨b(∃bx(:T) ∈ as. f[x]))
Proof
Definitions occuring in Statement : 
bexists: bexists, 
cons: [a / b]
, 
bor: p ∨bq
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
bexists: bexists, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
bor_mon: <𝔹,∨b>
, 
grp_op: *
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
infix_ap: x f y
Lemmas referenced : 
top_wf, 
mon_for_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}f,as,a,T:Top.    (\mexists{}\msubb{}x(:T)  \mmember{}  [a  /  as].  f[x]  \msim{}  f[a]  \mvee{}\msubb{}(\mexists{}\msubb{}x(:T)  \mmember{}  as.  f[x]))
Date html generated:
2016_05_16-AM-07_38_10
Last ObjectModification:
2015_12_28-PM-05_44_25
Theory : list_2
Home
Index