Step
*
1
1
of Lemma
perm_morph_wf
1. S : Type
2. T : Type
3. s2t : S ⟶ T
4. t2s : T ⟶ S
5. (t2s o s2t) = Id{S} ∈ (S ⟶ S)
6. (s2t o t2s) = Id{T} ∈ (T ⟶ T)
7. p : Perm(S)
8. (p.b o p.f) = Id{S} ∈ (S ⟶ S)
9. (p.f o p.b) = Id{S} ∈ (S ⟶ S)
⊢ ((s2t o (p.b o t2s)) o (s2t o (p.f o t2s))) = Id{T} ∈ (T ⟶ T)
BY
{ (RW (CompIdHypNormC [5; 6; 8; 9]) 0 THEN Auto) }
Latex:
Latex:
1. S : Type
2. T : Type
3. s2t : S {}\mrightarrow{} T
4. t2s : T {}\mrightarrow{} S
5. (t2s o s2t) = Id\{S\}
6. (s2t o t2s) = Id\{T\}
7. p : Perm(S)
8. (p.b o p.f) = Id\{S\}
9. (p.f o p.b) = Id\{S\}
\mvdash{} ((s2t o (p.b o t2s)) o (s2t o (p.f o t2s))) = Id\{T\}
By
Latex:
(RW (CompIdHypNormC [5; 6; 8; 9]) 0 THEN Auto)
Home
Index