Step
*
of Lemma
gcopower_properties
∀s:DSet. ∀g:AbGrp. ∀c:gcopower{i}(s;g).
(IsEqFun(|c.grp|;=b)
∧ grp_p(c.grp)
∧ Comm(|c.grp|;*)
∧ (∀j:|s|. IsMonHom{g,c.grp}(c.inj j))
∧ (∀h:AbGrp. ∀f:|s| ⟶ MonHom(g,h).
(c.umap h f) = !v:|c.grp| ⟶ |h|. (IsMonHom{c.grp,h}(v) ∧ (∀j:|s|. ((f j) = (v o (c.inj j)) ∈ (|g| ⟶ |h|))))))
BY
{ (Auto THEN DVar `c' THEN Unhide THEN Auto THEN Try (BackThruSomeHyp)) }
1
1. s : DSet@i'
2. g : AbGrp@i'
3. c : gcopower_sig{i:l}(s;g)@i'
4. [%2] : IsEqFun(|c.grp|;=b)
∧ grp_p(c.grp)
∧ Comm(|c.grp|;*)
∧ (∀j:|s|. IsMonHom{g,c.grp}(c.inj j))
∧ (∀h:AbGrp. ∀f:|s| ⟶ MonHom(g,h).
(c.umap h f) = !v:|c.grp| ⟶ |h|. (IsMonHom{c.grp,h}(v) ∧ (∀j:|s|. ((f j) = (v o (c.inj j)) ∈ (|g| ⟶ |h|)))))@i'
5. IsEqFun(|c.grp|;=b)
⊢ SqStable(grp_p(c.grp))
Latex:
Latex:
\mforall{}s:DSet. \mforall{}g:AbGrp. \mforall{}c:gcopower\{i\}(s;g).
(IsEqFun(|c.grp|;=\msubb{})
\mwedge{} grp\_p(c.grp)
\mwedge{} Comm(|c.grp|;*)
\mwedge{} (\mforall{}j:|s|. IsMonHom\{g,c.grp\}(c.inj j))
\mwedge{} (\mforall{}h:AbGrp. \mforall{}f:|s| {}\mrightarrow{} MonHom(g,h).
(c.umap h f) = !v:|c.grp| {}\mrightarrow{} |h|
(IsMonHom\{c.grp,h\}(v) \mwedge{} (\mforall{}j:|s|. ((f j) = (v o (c.inj j)))))))
By
Latex:
(Auto THEN DVar `c' THEN Unhide THEN Auto THEN Try (BackThruSomeHyp))
Home
Index