Nuprl Lemma : gcopower_properties

s:DSet. ∀g:AbGrp. ∀c:gcopower{i}(s;g).
  (IsEqFun(|c.grp|;=b)
  ∧ grp_p(c.grp)
  ∧ Comm(|c.grp|;*)
  ∧ (∀j:|s|. IsMonHom{g,c.grp}(c.inj j))
  ∧ (∀h:AbGrp. ∀f:|s| ⟶ MonHom(g,h).
       (c.umap f) !v:|c.grp| ⟶ |h|. (IsMonHom{c.grp,h}(v) ∧ (∀j:|s|. ((f j) (v (c.inj j)) ∈ (|g| ⟶ |h|))))))


Proof




Definitions occuring in Statement :  gcopower: gcopower{i}(s;g) grp_p: grp_p(g) gcopower_umap: g1.umap gcopower_inj: g1.inj gcopower_grp: g1.grp eqfun_p: IsEqFun(T;eq) comm: Comm(T;op) compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abgrp: AbGrp grp_op: * grp_eq: =b grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B gcopower: gcopower{i}(s;g) uall: [x:A]. B[x] member: t ∈ T dset: DSet abgrp: AbGrp grp: Group{i} mon: Mon sq_stable: SqStable(P) implies:  Q squash: T guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a monoid_hom: MonHom(M1,M2) prop: monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) grp_p: grp_p(g)
Lemmas referenced :  grp_inv_wf grp_id_wf sq_stable__group_p sq_stable__equal sq_stable__all sq_stable__and sq_stable__uni_sat squash_wf compose_wf equal_wf all_wf monoid_hom_p_wf subtype_rel_dep_function gcopower_umap_wf dset_wf gcopower_wf abgrp_wf monoid_hom_wf set_car_wf gcopower_inj_wf sq_stable__monoid_hom_p grp_op_wf sq_stable__comm grp_eq_wf gcopower_grp_wf grp_car_wf sq_stable__eqfun_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination introduction productElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation because_Cache applyEquality functionEquality lambdaEquality independent_isectElimination productEquality isect_memberEquality independent_pairEquality axiomEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:AbGrp.  \mforall{}c:gcopower\{i\}(s;g).
    (IsEqFun(|c.grp|;=\msubb{})
    \mwedge{}  grp\_p(c.grp)
    \mwedge{}  Comm(|c.grp|;*)
    \mwedge{}  (\mforall{}j:|s|.  IsMonHom\{g,c.grp\}(c.inj  j))
    \mwedge{}  (\mforall{}h:AbGrp.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).
              (c.umap  h  f)  =  !v:|c.grp|  {}\mrightarrow{}  |h|
                                                (IsMonHom\{c.grp,h\}(v)  \mwedge{}  (\mforall{}j:|s|.  ((f  j)  =  (v  o  (c.inj  j)))))))



Date html generated: 2016_05_16-AM-08_14_07
Last ObjectModification: 2016_01_16-PM-11_41_58

Theory : polynom_1


Home Index