Nuprl Lemma : sq_stable__monoid_hom_p
∀[a,b:GrpSig]. ∀[f:|a| ⟶ |b|].  SqStable(IsMonHom{a,b}(f))
Proof
Definitions occuring in Statement : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
Lemmas referenced : 
sq_stable__and, 
uall_wf, 
grp_car_wf, 
equal_wf, 
grp_op_wf, 
grp_id_wf, 
sq_stable__uall, 
sq_stable__equal, 
squash_wf, 
and_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
axiomEquality, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
functionEquality
Latex:
\mforall{}[a,b:GrpSig].  \mforall{}[f:|a|  {}\mrightarrow{}  |b|].    SqStable(IsMonHom\{a,b\}(f))
Date html generated:
2016_05_15-PM-00_09_55
Last ObjectModification:
2015_12_26-PM-11_45_03
Theory : groups_1
Home
Index