Nuprl Lemma : sq_stable__monoid_hom_p

[a,b:GrpSig]. ∀[f:|a| ⟶ |b|].  SqStable(IsMonHom{a,b}(f))


Proof




Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) grp_car: |g| grp_sig: GrpSig sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop: implies:  Q sq_stable: SqStable(P) and: P ∧ Q
Lemmas referenced :  sq_stable__and uall_wf grp_car_wf equal_wf grp_op_wf grp_id_wf sq_stable__uall sq_stable__equal squash_wf and_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality isect_memberEquality independent_functionElimination because_Cache dependent_functionElimination axiomEquality lambdaFormation productElimination independent_pairEquality functionEquality

Latex:
\mforall{}[a,b:GrpSig].  \mforall{}[f:|a|  {}\mrightarrow{}  |b|].    SqStable(IsMonHom\{a,b\}(f))



Date html generated: 2016_05_15-PM-00_09_55
Last ObjectModification: 2015_12_26-PM-11_45_03

Theory : groups_1


Home Index