Nuprl Lemma : sq_stable__uni_sat

[T:Type]. ∀a:T. ∀[Q:T ⟶ ℙ]. ((∀x:T. SqStable(Q[x]))  SqStable(a !x:T. Q[x]))


Proof




Definitions occuring in Statement :  uni_sat: !x:T. Q[x] sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uni_sat: !x:T. Q[x] uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_apply: x[s] so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__and all_wf equal_wf sq_stable__all sq_stable__equal squash_wf sq_stable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality isect_memberEquality lambdaEquality functionEquality hypothesis independent_functionElimination dependent_functionElimination universeEquality because_Cache axiomEquality Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType

Latex:
\mforall{}[T:Type].  \mforall{}a:T.  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  SqStable(Q[x]))  {}\mRightarrow{}  SqStable(a  =  !x:T.  Q[x]))



Date html generated: 2019_06_20-AM-11_18_16
Last ObjectModification: 2018_09_26-AM-10_25_18

Theory : core_2


Home Index