Nuprl Lemma : sq_stable__uni_sat
∀[T:Type]. ∀a:T. ∀[Q:T ⟶ ℙ]. ((∀x:T. SqStable(Q[x])) 
⇒ SqStable(a = !x:T. Q[x]))
Proof
Definitions occuring in Statement : 
uni_sat: a = !x:T. Q[x]
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uni_sat: a = !x:T. Q[x]
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
Lemmas referenced : 
sq_stable__and, 
all_wf, 
equal_wf, 
sq_stable__all, 
sq_stable__equal, 
squash_wf, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
isect_memberEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
universeEquality, 
because_Cache, 
axiomEquality, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :universeIsType
Latex:
\mforall{}[T:Type].  \mforall{}a:T.  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x:T.  SqStable(Q[x]))  {}\mRightarrow{}  SqStable(a  =  !x:T.  Q[x]))
Date html generated:
2019_06_20-AM-11_18_16
Last ObjectModification:
2018_09_26-AM-10_25_18
Theory : core_2
Home
Index