Nuprl Lemma : gcopower_grp_wf

s:PosetSig. ∀g:GrpSig. ∀g1:gcopower_sig{i:l}(s;g).  (g1.grp ∈ GrpSig)


Proof




Definitions occuring in Statement :  gcopower_grp: g1.grp gcopower_sig: gcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T grp_sig: GrpSig poset_sig: PosetSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T gcopower_sig: gcopower_sig{i:l}(s;g) gcopower_grp: g1.grp pi1: fst(t)
Lemmas referenced :  gcopower_sig_wf grp_sig_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:PosetSig.  \mforall{}g:GrpSig.  \mforall{}g1:gcopower\_sig\{i:l\}(s;g).    (g1.grp  \mmember{}  GrpSig)



Date html generated: 2016_05_16-AM-08_13_41
Last ObjectModification: 2015_12_28-PM-06_09_28

Theory : polynom_1


Home Index