Nuprl Lemma : gcopower_sig_wf

s:PosetSig. ∀g:GrpSig.  (gcopower_sig{i:l}(s;g) ∈ 𝕌')


Proof




Definitions occuring in Statement :  gcopower_sig: gcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T universe: Type grp_sig: GrpSig poset_sig: PosetSig
Definitions unfolded in proof :  gcopower_sig: gcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] abgrp: AbGrp grp: Group{i} mon: Mon
Lemmas referenced :  grp_sig_wf set_car_wf grp_car_wf abgrp_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut productEquality lemma_by_obid hypothesis cumulativity functionEquality sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename

Latex:
\mforall{}s:PosetSig.  \mforall{}g:GrpSig.    (gcopower\_sig\{i:l\}(s;g)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_13_37
Last ObjectModification: 2015_12_28-PM-06_09_38

Theory : polynom_1


Home Index