Nuprl Lemma : gcopower_wf

s:DSet. ∀g:AbGrp.  (gcopower{i}(s;g) ∈ 𝕌')


Proof




Definitions occuring in Statement :  gcopower: gcopower{i}(s;g) all: x:A. B[x] member: t ∈ T universe: Type abgrp: AbGrp dset: DSet
Definitions unfolded in proof :  gcopower: gcopower{i}(s;g) all: x:A. B[x] member: t ∈ T dset: DSet abgrp: AbGrp grp: Group{i} mon: Mon and: P ∧ Q uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a monoid_hom: MonHom(M1,M2)
Lemmas referenced :  gcopower_sig_wf eqfun_p_wf grp_car_wf gcopower_grp_wf grp_eq_wf grp_p_wf comm_wf grp_op_wf all_wf set_car_wf monoid_hom_p_wf gcopower_inj_wf abgrp_wf monoid_hom_wf uni_sat_wf gcopower_umap_wf subtype_rel_dep_function equal_wf compose_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis productEquality cumulativity isectElimination because_Cache lambdaEquality applyEquality instantiate functionEquality independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:AbGrp.    (gcopower\{i\}(s;g)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_14_03
Last ObjectModification: 2015_12_28-PM-06_09_34

Theory : polynom_1


Home Index