Nuprl Lemma : gcopower_wf
∀s:DSet. ∀g:AbGrp.  (gcopower{i}(s;g) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
gcopower: gcopower{i}(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
abgrp: AbGrp
, 
dset: DSet
Definitions unfolded in proof : 
gcopower: gcopower{i}(s;g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
monoid_hom: MonHom(M1,M2)
Lemmas referenced : 
gcopower_sig_wf, 
eqfun_p_wf, 
grp_car_wf, 
gcopower_grp_wf, 
grp_eq_wf, 
grp_p_wf, 
comm_wf, 
grp_op_wf, 
all_wf, 
set_car_wf, 
monoid_hom_p_wf, 
gcopower_inj_wf, 
abgrp_wf, 
monoid_hom_wf, 
uni_sat_wf, 
gcopower_umap_wf, 
subtype_rel_dep_function, 
equal_wf, 
compose_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productEquality, 
cumulativity, 
isectElimination, 
because_Cache, 
lambdaEquality, 
applyEquality, 
instantiate, 
functionEquality, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  \mforall{}g:AbGrp.    (gcopower\{i\}(s;g)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_16-AM-08_14_03
Last ObjectModification:
2015_12_28-PM-06_09_34
Theory : polynom_1
Home
Index