Nuprl Lemma : uni_sat_wf

[T:Type]. ∀[a:T]. ∀[Q:T ⟶ ℙ].  (a !x:T. Q[x] ∈ ℙ)


Proof




Definitions occuring in Statement :  uni_sat: !x:T. Q[x] uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uni_sat: !x:T. Q[x] prop: and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule productEquality applyEquality hypothesisEquality hypothesis thin lambdaEquality sqequalHypSubstitution universeEquality extract_by_obid isectElimination functionEquality axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType,  isect_memberEquality cumulativity because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (a  =  !x:T.  Q[x]  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_18_10
Last ObjectModification: 2018_09_26-AM-10_25_16

Theory : core_2


Home Index