Nuprl Lemma : uni_sat_wf
∀[T:Type]. ∀[a:T]. ∀[Q:T ⟶ ℙ].  (a = !x:T. Q[x] ∈ ℙ)
Proof
Definitions occuring in Statement : 
uni_sat: a = !x:T. Q[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uni_sat: a = !x:T. Q[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
universeEquality, 
extract_by_obid, 
isectElimination, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :universeIsType, 
isect_memberEquality, 
cumulativity, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].    (a  =  !x:T.  Q[x]  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-AM-11_18_10
Last ObjectModification:
2018_09_26-AM-10_25_16
Theory : core_2
Home
Index