Nuprl Lemma : grp_p_wf

g:GrpSig. (grp_p(g) ∈ ℙ)


Proof




Definitions occuring in Statement :  grp_p: grp_p(g) prop: all: x:A. B[x] member: t ∈ T grp_sig: GrpSig
Definitions unfolded in proof :  grp_p: grp_p(g) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  group_p_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis

Latex:
\mforall{}g:GrpSig.  (grp\_p(g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-08_13_52
Last ObjectModification: 2015_12_28-PM-06_09_37

Theory : polynom_1


Home Index