Nuprl Lemma : grp_p_wf
∀g:GrpSig. (grp_p(g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
grp_p: grp_p(g)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
grp_p: grp_p(g)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
group_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}g:GrpSig.  (grp\_p(g)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-08_13_52
Last ObjectModification:
2015_12_28-PM-06_09_37
Theory : polynom_1
Home
Index