Nuprl Lemma : gcopower_umap_wf

s:PosetSig. ∀g:GrpSig. ∀g1:gcopower_sig{i:l}(s;g).  (g1.umap ∈ h:AbGrp ⟶ (|s| ⟶ |g| ⟶ |h|) ⟶ |g1.grp| ⟶ |h|)


Proof




Definitions occuring in Statement :  gcopower_umap: g1.umap gcopower_grp: g1.grp gcopower_sig: gcopower_sig{i:l}(s;g) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] abgrp: AbGrp grp_car: |g| grp_sig: GrpSig set_car: |p| poset_sig: PosetSig
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T gcopower_sig: gcopower_sig{i:l}(s;g) gcopower_umap: g1.umap gcopower_grp: g1.grp pi1: fst(t) pi2: snd(t)
Lemmas referenced :  gcopower_sig_wf grp_sig_wf poset_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}s:PosetSig.  \mforall{}g:GrpSig.  \mforall{}g1:gcopower\_sig\{i:l\}(s;g).
    (g1.umap  \mmember{}  h:AbGrp  {}\mrightarrow{}  (|s|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |h|)  {}\mrightarrow{}  |g1.grp|  {}\mrightarrow{}  |h|)



Date html generated: 2016_05_16-AM-08_13_46
Last ObjectModification: 2015_12_28-PM-06_09_26

Theory : polynom_1


Home Index