Nuprl Lemma : oal_cons_pr_wf

a:LOSet. ∀b:AbDMon. ∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.
  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  (oal_cons_pr(x;y;ws) ∈ |oal(a;b)|))


Proof




Definitions occuring in Statement :  oal_cons_pr: oal_cons_pr(x;y;ws) oalist: oal(a;b) before: before(u;ps) map: map(f;as) assert: b pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T lambda: λx.A[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_cons_pr: oal_cons_pr(x;y;ws)
Lemmas referenced :  cons_in_oalist
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
    ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  (oal\_cons\_pr(x;y;ws)  \mmember{}  |oal(a;b)|))



Date html generated: 2016_05_16-AM-08_15_53
Last ObjectModification: 2015_12_28-PM-06_28_36

Theory : polynom_2


Home Index