Step
*
1
of Lemma
oal_merge_non_id_vals
1. a : LOSet
2. b : AbDMon
3. ps : (|a| × |b|) List
4. qs : (|a| × |b|) List
⊢ (∀us,vs:(|a| × |b|) List.
(||us|| + ||vs|| < ||ps|| + ||qs||
⇒ (¬↑(e ∈b map(λx.(snd(x));us)))
⇒ (¬↑(e ∈b map(λx.(snd(x));vs)))
⇒ (¬↑(e ∈b map(λx.(snd(x));us ++ vs)))))
⇒ (¬↑(e ∈b map(λx.(snd(x));ps)))
⇒ (¬↑(e ∈b map(λx.(snd(x));qs)))
⇒ (¬↑(e ∈b map(λx.(snd(x));ps ++ qs)))
BY
{ New [`q';`qs\''] (D 4)
THEN New [`p';`ps\''] (D 3)
THEN ((AbReduce 0) THEN Auto)⋅ }
1
1. a : LOSet
2. b : AbDMon
3. p : |a| × |b|
4. ps' : (|a| × |b|) List
5. q : |a| × |b|
6. qs' : (|a| × |b|) List
7. ∀us,vs:(|a| × |b|) List.
(||us|| + ||vs|| < (||ps'|| + 1) + ||qs'|| + 1
⇒ (¬↑(e ∈b map(λx.(snd(x));us)))
⇒ (¬↑(e ∈b map(λx.(snd(x));vs)))
⇒ (¬↑(e ∈b map(λx.(snd(x));us ++ vs))))
8. ¬↑(((snd(p)) =b e) ∨b(e ∈b map(λx.(snd(x));ps')))
9. ¬↑(((snd(q)) =b e) ∨b(e ∈b map(λx.(snd(x));qs')))
⊢ ¬↑(e ∈b map(λx.(snd(x));[p / ps'] ++ [q / qs']))
Latex:
Latex:
1. a : LOSet
2. b : AbDMon
3. ps : (|a| \mtimes{} |b|) List
4. qs : (|a| \mtimes{} |b|) List
\mvdash{} (\mforall{}us,vs:(|a| \mtimes{} |b|) List.
(||us|| + ||vs|| < ||ps|| + ||qs||
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));us)))
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));vs)))
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));us ++ vs)))))
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));ps)))
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));qs)))
{}\mRightarrow{} (\mneg{}\muparrow{}(e \mmember{}\msubb{} map(\mlambda{}x.(snd(x));ps ++ qs)))
By
Latex:
New [`q';`qs\mbackslash{}''] (D 4)
THEN New [`p';`ps\mbackslash{}''] (D 3)
THEN ((AbReduce 0) THEN Auto)\mcdot{}
Home
Index