Nuprl Lemma : oal_merge_non_id_vals
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:(|a| × |b|) List.
  ((¬↑(e ∈b map(λx.(snd(x));ps))) ⇒ (¬↑(e ∈b map(λx.(snd(x));qs))) ⇒ (¬↑(e ∈b map(λx.(snd(x));ps ++ qs))))
Proof
Definitions occuring in Statement : 
oal_merge: ps ++ qs, 
mem: a ∈b as, 
map: map(f;as), 
list: T List, 
assert: ↑b, 
pi2: snd(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
product: x:A × B[x], 
dset_of_mon: g↓set, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset: DSet, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
so_lambda: λ2x y.t[x; y], 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
pi2: snd(t), 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
so_apply: x[s1;s2], 
guard: {T}, 
or: P ∨ Q, 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A, 
false: False, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cons: [a / b], 
set_eq: =b, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
infix_ap: x f y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
list_pr_length_ind, 
set_car_wf, 
grp_car_wf, 
not_wf, 
assert_wf, 
mem_wf, 
dset_of_mon_wf, 
grp_id_wf, 
map_wf, 
dset_of_mon_wf0, 
oal_merge_wf, 
list_wf, 
abdmonoid_wf, 
loset_wf, 
list-cases, 
length_of_nil_lemma, 
map_nil_lemma, 
oal_merge_left_nil_lemma, 
mem_nil_lemma, 
false_wf, 
all_wf, 
less_than_wf, 
length_wf, 
product_subtype_list, 
length_of_cons_lemma, 
map_cons_lemma, 
oal_merge_right_nil_lemma, 
mem_cons_lemma, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
grp_eq_wf, 
assert_of_bnot, 
bnot_thru_bor, 
iff_transitivity, 
bnot_wf, 
eqtt_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
eqff_to_assert, 
assert-bnot, 
assert_of_mon_eq, 
iff_weakening_uiff, 
assert_of_band, 
oal_merge_conses_lemma, 
set_blt_wf, 
uiff_transitivity, 
equal-wf-T-base, 
set_lt_wf, 
assert_of_set_lt, 
grp_op_wf, 
cons_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformless_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
because_Cache, 
applyEquality, 
productElimination, 
independent_functionElimination, 
unionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
independent_pairFormation, 
independent_isectElimination, 
equalityElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
impliesFunctionality, 
baseClosed, 
independent_pairEquality, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.
    ((\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  ++  qs))))
Date html generated:
2017_10_01-AM-10_02_42
Last ObjectModification:
2017_03_03-PM-01_09_19
Theory : polynom_2
Home
Index