Nuprl Lemma : oal_merge_non_id_vals

a:LOSet. ∀b:AbDMon. ∀ps,qs:(|a| × |b|) List.
  ((¬↑(e ∈b map(λx.(snd(x));ps)))  (¬↑(e ∈b map(λx.(snd(x));qs)))  (¬↑(e ∈b map(λx.(snd(x));ps ++ qs))))


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs mem: a ∈b as map: map(f;as) list: List assert: b pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] dset_of_mon: g↓set abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon so_lambda: λ2y.t[x; y] implies:  Q prop: subtype_rel: A ⊆B pi2: snd(t) dset_of_mon: g↓set set_car: |p| pi1: fst(t) so_apply: x[s1;s2] guard: {T} or: P ∨ Q top: Top assert: b ifthenelse: if then else fi  bfalse: ff not: ¬A false: False so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] set_eq: =b uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb infix_ap: y iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) cand: c∧ B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  list_pr_length_ind set_car_wf grp_car_wf not_wf assert_wf mem_wf dset_of_mon_wf grp_id_wf map_wf dset_of_mon_wf0 oal_merge_wf list_wf abdmonoid_wf loset_wf list-cases length_of_nil_lemma map_nil_lemma oal_merge_left_nil_lemma mem_nil_lemma false_wf all_wf less_than_wf length_wf product_subtype_list length_of_cons_lemma map_cons_lemma oal_merge_right_nil_lemma mem_cons_lemma bor_wf infix_ap_wf bool_wf grp_eq_wf assert_of_bnot bnot_thru_bor iff_transitivity bnot_wf eqtt_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot assert_of_mon_eq iff_weakening_uiff assert_of_band oal_merge_conses_lemma set_blt_wf uiff_transitivity equal-wf-T-base set_lt_wf assert_of_set_lt grp_op_wf cons_wf decidable__lt satisfiable-full-omega-tt intformnot_wf intformless_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin productEquality isectElimination setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality because_Cache applyEquality productElimination independent_functionElimination unionElimination isect_memberEquality voidElimination voidEquality addEquality natural_numberEquality promote_hyp hypothesis_subsumption independent_pairFormation independent_isectElimination equalityElimination dependent_pairFormation equalityTransitivity equalitySymmetry instantiate cumulativity impliesFunctionality baseClosed independent_pairEquality int_eqEquality intEquality computeAll

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.
    ((\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));qs)))
    {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps  ++  qs))))



Date html generated: 2017_10_01-AM-10_02_42
Last ObjectModification: 2017_03_03-PM-01_09_19

Theory : polynom_2


Home Index