Nuprl Lemma : dset_of_mon_wf0

[g:GrpSig]. (g↓set ∈ PosetSig)


Proof




Definitions occuring in Statement :  dset_of_mon: g↓set grp_sig: GrpSig poset_sig: PosetSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  dset_of_mon: g↓set poset_sig: PosetSig uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  grp_car_wf grp_eq_wf grp_le_wf bool_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality productEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:GrpSig].  (g\mdownarrow{}set  \mmember{}  PosetSig)



Date html generated: 2016_05_15-PM-00_10_40
Last ObjectModification: 2015_12_26-PM-11_44_09

Theory : groups_1


Home Index