Nuprl Lemma : dset_of_mon_wf0
∀[g:GrpSig]. (g↓set ∈ PosetSig)
Proof
Definitions occuring in Statement : 
dset_of_mon: g↓set
, 
grp_sig: GrpSig
, 
poset_sig: PosetSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
dset_of_mon: g↓set
, 
poset_sig: PosetSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
grp_car_wf, 
grp_eq_wf, 
grp_le_wf, 
bool_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[g:GrpSig].  (g\mdownarrow{}set  \mmember{}  PosetSig)
Date html generated:
2016_05_15-PM-00_10_40
Last ObjectModification:
2015_12_26-PM-11_44_09
Theory : groups_1
Home
Index