Nuprl Lemma : list_pr_length_ind

T:Type. ∀Q:(T List) ⟶ (T List) ⟶ ℙ.
  ((∀ps,qs:T List.  ((∀us,vs:T List.  (||us|| ||vs|| < ||ps|| ||qs||  Q[us;vs]))  Q[ps;qs]))
   {∀ps,qs:T List.  Q[ps;qs]})


Proof




Definitions occuring in Statement :  length: ||as|| list: List less_than: a < b prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  uiff: uiff(P;Q) less_than: a < b squash: T pi1: fst(t) pi2: snd(t)
Lemmas referenced :  all_wf list_wf less_than_wf length_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf pi1_wf pi2_wf add_nat_wf length_wf_nat nat_wf nat_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma equal_wf decidable__lt lelt_wf set_wf primrec-wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache functionEquality addEquality applyEquality functionExtensionality universeEquality natural_numberEquality setElimination rename productElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination addLevel equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality independent_pairEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_functionElimination imageElimination productEquality

Latex:
\mforall{}T:Type.  \mforall{}Q:(T  List)  {}\mrightarrow{}  (T  List)  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}ps,qs:T  List.    ((\mforall{}us,vs:T  List.    (||us||  +  ||vs||  <  ||ps||  +  ||qs||  {}\mRightarrow{}  Q[us;vs]))  {}\mRightarrow{}  Q[ps;qs]))
    {}\mRightarrow{}  \{\mforall{}ps,qs:T  List.    Q[ps;qs]\})



Date html generated: 2017_10_01-AM-10_01_58
Last ObjectModification: 2017_03_03-PM-01_04_27

Theory : polynom_2


Home Index