Nuprl Lemma : abdmonoid_wf

AbDMon ∈ 𝕌'


Proof




Definitions occuring in Statement :  abdmonoid: AbDMon member: t ∈ T universe: Type
Definitions unfolded in proof :  abdmonoid: AbDMon member: t ∈ T uall: [x:A]. B[x] dmon: DMon mon: Mon prop:
Lemmas referenced :  dmon_wf comm_wf grp_car_wf grp_op_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity setEquality cut lemma_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality

Latex:
AbDMon  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_15-PM-00_07_39
Last ObjectModification: 2015_12_26-PM-11_46_36

Theory : groups_1


Home Index