Nuprl Lemma : abdmonoid_wf
AbDMon ∈ 𝕌'
Proof
Definitions occuring in Statement : 
abdmonoid: AbDMon
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
abdmonoid: AbDMon
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
dmon: DMon
, 
mon: Mon
, 
prop: ℙ
Lemmas referenced : 
dmon_wf, 
comm_wf, 
grp_car_wf, 
grp_op_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
setEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
cumulativity, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality
Latex:
AbDMon  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_15-PM-00_07_39
Last ObjectModification:
2015_12_26-PM-11_46_36
Theory : groups_1
Home
Index