Nuprl Lemma : oal_merge_wf

a:LOSet. ∀b:AbDMon. ∀ps,qs:(|a| × |b|) List.  (ps ++ qs ∈ (|a| × |b|) List)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdmonoid: AbDMon dmon: DMon mon: Mon pi1: fst(t) pi2: snd(t) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) oal_merge: ps ++ qs ycomb: Y ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit uiff: uiff(P;Q) bnot: ¬bb assert: b infix_ap: y
Lemmas referenced :  abdmonoid_wf loset_wf list_wf set_car_wf grp_car_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_nil_lemma reduce_tl_nil_lemma oal_merge_left_nil_lemma null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma oal_merge_right_nil_lemma cons_wf set_blt_wf bool_wf eqtt_to_assert assert_of_set_lt eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot set_lt_wf infix_ap_wf grp_eq_wf grp_op_wf grp_id_wf assert_of_mon_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution productEquality isectElimination thin setElimination rename hypothesisEquality because_Cache productElimination sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry applyEquality unionElimination promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination independent_pairEquality equalityElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:(|a|  \mtimes{}  |b|)  List.    (ps  ++  qs  \mmember{}  (|a|  \mtimes{}  |b|)  List)



Date html generated: 2017_10_01-AM-10_02_28
Last ObjectModification: 2017_03_03-PM-01_05_04

Theory : polynom_2


Home Index