Nuprl Lemma : oal_merge_conses_lemma

qs,vq,kq,ps,vp,kp,b,a:Top.
  ([<kp, vp> ps] ++ [<kq, vq> qs] if kq <b kp then [<kp, vp> (ps ++ [<kq, vq> qs])]
  if kp <b kq then [<kq, vq> ([<kp, vp> ps] ++ qs)]
  if (vp vq) =b then ps ++ qs
  else [<kp, vp vq> (ps ++ qs)]
  fi )


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs cons: [a b] ifthenelse: if then else fi  top: Top infix_ap: y all: x:A. B[x] pair: <a, b> sqequal: t grp_id: e grp_op: * grp_eq: =b set_blt: a <b b
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T oal_merge: ps ++ qs ycomb: Y top: Top ifthenelse: if then else fi  bfalse: ff pi1: fst(t) pi2: snd(t)
Lemmas referenced :  top_wf null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}qs,vq,kq,ps,vp,kp,b,a:Top.
    ([<kp,  vp>  /  ps]  ++  [<kq,  vq>  /  qs]  \msim{}  if  kq  <\msubb{}  kp  then  [<kp,  vp>  /  (ps  ++  [<kq,  vq>  /  qs])]
    if  kp  <\msubb{}  kq  then  [<kq,  vq>  /  ([<kp,  vp>  /  ps]  ++  qs)]
    if  (vp  *  vq)  =\msubb{}  e  then  ps  ++  qs
    else  [<kp,  vp  *  vq>  /  (ps  ++  qs)]
    fi  )



Date html generated: 2016_05_16-AM-08_17_31
Last ObjectModification: 2015_12_28-PM-06_27_09

Theory : polynom_2


Home Index