Nuprl Lemma : dset_of_mon_wf
∀[g:DMon]. (g↓set ∈ DSet)
Proof
Definitions occuring in Statement : 
dset_of_mon: g↓set, 
dmon: DMon, 
dset: DSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
dset_of_mon: g↓set, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
poset_sig: PosetSig, 
dmon: DMon, 
mon: Mon, 
set_car: |p|, 
pi1: fst(t), 
grp_car: |g|, 
set_eq: =b, 
pi2: snd(t), 
grp_eq: =b, 
prop: ℙ
Lemmas referenced : 
dmon_wf, 
dmon_properties, 
grp_car_wf, 
grp_eq_wf, 
grp_le_wf, 
bool_wf, 
eqfun_p_wf, 
set_car_wf, 
set_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
setElimination, 
rename, 
functionEquality, 
productEquality
Latex:
\mforall{}[g:DMon].  (g\mdownarrow{}set  \mmember{}  DSet)
Date html generated:
2016_05_15-PM-00_10_43
Last ObjectModification:
2015_12_26-PM-11_44_28
Theory : groups_1
Home
Index