Nuprl Lemma : dset_of_mon_wf

[g:DMon]. (g↓set ∈ DSet)


Proof




Definitions occuring in Statement :  dset_of_mon: g↓set dmon: DMon dset: DSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  dset_of_mon: g↓set uall: [x:A]. B[x] member: t ∈ T dset: DSet poset_sig: PosetSig dmon: DMon mon: Mon set_car: |p| pi1: fst(t) grp_car: |g| set_eq: =b pi2: snd(t) grp_eq: =b prop:
Lemmas referenced :  dmon_wf dmon_properties grp_car_wf grp_eq_wf grp_le_wf bool_wf eqfun_p_wf set_car_wf set_eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality dependent_set_memberEquality dependent_pairEquality setElimination rename functionEquality productEquality

Latex:
\mforall{}[g:DMon].  (g\mdownarrow{}set  \mmember{}  DSet)



Date html generated: 2016_05_15-PM-00_10_43
Last ObjectModification: 2015_12_26-PM-11_44_28

Theory : groups_1


Home Index