Step
*
1
of Lemma
oal_merge_preserves_lt
1. s : LOSet
2. g : OCMon
3. ps : |oal(s;g)|
4. qs : |oal(s;g)|
5. rs : |oal(s;g)|
6. k : |s|
7. ∀k':|s|. ((k <s k')
⇒ ((qs[k']) = (rs[k']) ∈ |g|))
8. (qs[k]) < (rs[k])
⊢ ∃k:|s|. ((∀k':|s|. ((k <s k')
⇒ (((ps ++ qs)[k']) = ((ps ++ rs)[k']) ∈ |g|))) ∧ (((ps ++ qs)[k]) < ((ps ++ rs)[k])))
BY
{ (((With k (D 0) THENM GenRepD
THENM RWH (LemmaC `lookup_merge`) 0) THENA Auto)
THEN Try ((BLemma `omon_inc` THEN Complete (Auto))⋅)
) }
1
1. s : LOSet
2. g : OCMon
3. ps : |oal(s;g)|
4. qs : |oal(s;g)|
5. rs : |oal(s;g)|
6. k : |s|
7. ∀k':|s|. ((k <s k')
⇒ ((qs[k']) = (rs[k']) ∈ |g|))
8. (qs[k]) < (rs[k])
9. k' : |s|
10. k <s k'
⊢ ((ps[k']) * (qs[k'])) = ((ps[k']) * (rs[k'])) ∈ |g|
2
1. s : LOSet
2. g : OCMon
3. ps : |oal(s;g)|
4. qs : |oal(s;g)|
5. rs : |oal(s;g)|
6. k : |s|
7. ∀k':|s|. ((k <s k')
⇒ ((qs[k']) = (rs[k']) ∈ |g|))
8. (qs[k]) < (rs[k])
⊢ ((ps[k]) * (qs[k])) < ((ps[k]) * (rs[k]))
Latex:
Latex:
1. s : LOSet
2. g : OCMon
3. ps : |oal(s;g)|
4. qs : |oal(s;g)|
5. rs : |oal(s;g)|
6. k : |s|
7. \mforall{}k':|s|. ((k <s k') {}\mRightarrow{} ((qs[k']) = (rs[k'])))
8. (qs[k]) < (rs[k])
\mvdash{} \mexists{}k:|s|
((\mforall{}k':|s|. ((k <s k') {}\mRightarrow{} (((ps ++ qs)[k']) = ((ps ++ rs)[k']))))
\mwedge{} (((ps ++ qs)[k]) < ((ps ++ rs)[k])))
By
Latex:
(((With k (D 0) THENM GenRepD
THENM RWH (LemmaC `lookup\_merge`) 0) THENA Auto)
THEN Try ((BLemma `omon\_inc` THEN Complete (Auto))\mcdot{})
)
Home
Index