Nuprl Lemma : oalist_cases_c

a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[00]
   (∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  Q[oal_cons_pr(x;y;ws)]))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oal_cons_pr: oal_cons_pr(x;y;ws) oal_nil: 00 oalist: oal(a;b) before: before(u;ps) map: map(f;as) assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_cons_pr: oal_cons_pr(x;y;ws) oal_nil: 00
Lemmas referenced :  oalist_cases_a
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lemma_by_obid

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[00]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
                ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[oal\_cons\_pr(x;y;ws)]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2016_05_16-AM-08_16_06
Last ObjectModification: 2015_12_28-PM-06_28_27

Theory : polynom_2


Home Index