Nuprl Lemma : oalist_cases_a

a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[[]]
   (∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  Q[[<x, y> ws]]))
   {∀ws:|oal(a;b)|. Q[ws]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] nil: [] assert: b prop: guard: {T} so_apply: x[s] pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet loset: LOSet poset: POSet{i} qoset: QOSet abdmonoid: AbDMon dmon: DMon mon: Mon set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_of_mon: g↓set so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top oalist: oal(a;b) dset_set: dset_set dset_list: List not: ¬A false: False prop: and: P ∧ Q cand: c∧ B assert: b ifthenelse: if then else fi  sd_ordered: sd_ordered(as) ycomb: Y list_ind: list_ind map: map(f;as) nil: [] it: btrue: tt true: True mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) grp_id: e pi2: snd(t) bor_mon: <𝔹,∨b> bfalse: ff grp_car: |g| squash: T sq_stable: SqStable(P) infix_ap: y bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] band: p ∧b q uiff: uiff(P;Q) unit: Unit bool: 𝔹 set_eq: =b cons: [a b] or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q list: List
Lemmas referenced :  set_car_wf oalist_wf grp_car_wf istype-assert before_wf map_wf set_prod_wf dset_of_mon_wf pi1_wf_top subtype_rel_product top_wf istype-void grp_id_wf subtype_rel_self mem_wf nil_wf dset_of_mon_wf0 sd_ordered_wf pi2_wf abdmonoid_wf loset_wf sq_stable__not sq_stable__assert not_wf assert_wf sq_stable__and grp_eq_wf bool_wf infix_ap_wf bor_wf bfalse_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eqtt_to_assert mem_cons_lemma sd_ordered_cons_lemma map_cons_lemma product_subtype_list false_wf true_wf mem_nil_lemma sd_ordered_nil_lemma map_nil_lemma list-cases assert_of_mon_eq assert_of_bor equal_wf or_wf iff_transitivity assert_of_band iff_weakening_uiff list_wf cons_in_oalist
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry because_Cache independent_isectElimination isect_memberEquality_alt voidElimination equalityIstype instantiate universeEquality natural_numberEquality independent_pairFormation dependent_set_memberEquality_alt productEquality productIsType productElimination imageElimination baseClosed imageMemberEquality functionIsTypeImplies independent_functionElimination functionEquality equalityIsType1 dependent_pairFormation_alt equalityElimination hypothesis_subsumption promote_hyp unionElimination unionIsType inrFormation_alt inlFormation_alt setEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[[]]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
                ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[[<x,  y>  /  ws]]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})



Date html generated: 2019_10_16-PM-01_07_19
Last ObjectModification: 2018_12_08-AM-11_57_16

Theory : polynom_2


Home Index