Nuprl Lemma : oalist_wf

a:LOSet. ∀b:AbDMon.  (oal(a;b) ∈ DSet)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon oalist: oal(a;b) loset: LOSet poset: POSet{i} qoset: QOSet subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q dset: DSet set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List dset_of_mon: g↓set pi2: snd(t) so_apply: x[s]
Lemmas referenced :  abdmonoid_properties dmon_properties dset_set_wf dset_list_wf set_prod_wf dset_of_mon_wf abdmonoid_wf assert_wf sd_ordered_wf map_wf set_car_wf not_wf mem_wf grp_id_wf grp_car_wf dset_of_mon_wf0 dset_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_functionElimination applyEquality lambdaEquality sqequalRule productEquality because_Cache productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.    (oal(a;b)  \mmember{}  DSet)



Date html generated: 2016_05_16-AM-08_15_23
Last ObjectModification: 2015_12_28-PM-06_28_39

Theory : polynom_2


Home Index