Nuprl Lemma : dset_set_wf

[s:DSet]. ∀[Q:|s| ⟶ ℙ].  ({x:s| Q[x]} ∈ DSet)


Proof




Definitions occuring in Statement :  dset_set: dset_set dset: DSet set_car: |p| uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  dset_set: dset_set uall: [x:A]. B[x] member: t ∈ T dset: DSet so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: uimplies: supposing a all: x:A. B[x] eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) and: P ∧ Q infix_ap: y implies:  Q
Lemmas referenced :  mk_dset_wf set_car_wf set_eq_wf subtype_rel_dep_function bool_wf subtype_rel_self set_wf dset_wf eqfun_p_subtyping assert_wf assert_witness equal_wf assert_of_dset_eq
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality setElimination rename hypothesisEquality hypothesis applyEquality because_Cache lambdaEquality functionEquality universeEquality independent_isectElimination lambdaFormation axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality productElimination independent_pairEquality independent_functionElimination

Latex:
\mforall{}[s:DSet].  \mforall{}[Q:|s|  {}\mrightarrow{}  \mBbbP{}].    (\{x:s|  Q[x]\}  \mmember{}  DSet)



Date html generated: 2016_05_15-PM-00_05_56
Last ObjectModification: 2015_12_26-PM-11_27_42

Theory : sets_1


Home Index