Nuprl Lemma : dset_set_wf
∀[s:DSet]. ∀[Q:|s| ⟶ ℙ].  ({x:s| Q[x]} ∈ DSet)
Proof
Definitions occuring in Statement : 
dset_set: dset_set, 
dset: DSet
, 
set_car: |p|
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
dset_set: dset_set, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
eqfun_p: IsEqFun(T;eq)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk_dset_wf, 
set_car_wf, 
set_eq_wf, 
subtype_rel_dep_function, 
bool_wf, 
subtype_rel_self, 
set_wf, 
dset_wf, 
eqfun_p_subtyping, 
assert_wf, 
assert_witness, 
equal_wf, 
assert_of_dset_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
independent_functionElimination
Latex:
\mforall{}[s:DSet].  \mforall{}[Q:|s|  {}\mrightarrow{}  \mBbbP{}].    (\{x:s|  Q[x]\}  \mmember{}  DSet)
Date html generated:
2016_05_15-PM-00_05_56
Last ObjectModification:
2015_12_26-PM-11_27_42
Theory : sets_1
Home
Index