Nuprl Lemma : eqfun_p_subtyping
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[eq:T ⟶ T ⟶ 𝔹].  IsEqFun({x:T| P[x]} eq) supposing IsEqFun(T;eq)
Proof
Definitions occuring in Statement : 
eqfun_p: IsEqFun(T;eq)
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
eqfun_p: IsEqFun(T;eq)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
assert_wf, 
equal_wf, 
set_wf, 
eqfun_p_wf, 
bool_wf, 
assert_witness, 
equal_functionality_wrt_subtype_rel2, 
iff_weakening_uiff, 
uiff_wf
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
dependent_set_memberEquality, 
because_Cache, 
functionEquality, 
isect_memberFormation, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    IsEqFun(\{x:T|  P[x]\}  ;eq)  supposing  IsEqFun(T;eq)
Date html generated:
2017_10_01-AM-08_13_21
Last ObjectModification:
2017_02_28-PM-01_57_49
Theory : sets_1
Home
Index