Nuprl Lemma : eqfun_p_subtyping

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[eq:T ⟶ T ⟶ 𝔹].  IsEqFun({x:T| P[x]} ;eq) supposing IsEqFun(T;eq)


Proof




Definitions occuring in Statement :  eqfun_p: IsEqFun(T;eq) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  eqfun_p: IsEqFun(T;eq) member: t ∈ T uall: [x:A]. B[x] infix_ap: y so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert_wf equal_wf set_wf eqfun_p_wf bool_wf assert_witness equal_functionality_wrt_subtype_rel2 iff_weakening_uiff uiff_wf
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid isectElimination thin applyEquality functionExtensionality hypothesisEquality cumulativity setElimination rename hypothesis setEquality lambdaEquality sqequalRule universeEquality dependent_set_memberEquality because_Cache functionEquality isect_memberFormation isect_memberEquality productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation independent_isectElimination addLevel

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    IsEqFun(\{x:T|  P[x]\}  ;eq)  supposing  IsEqFun(T;eq)



Date html generated: 2017_10_01-AM-08_13_21
Last ObjectModification: 2017_02_28-PM-01_57_49

Theory : sets_1


Home Index