Nuprl Lemma : mk_dset_wf

[T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹].  mk_dset(T, eq) ∈ DSet supposing IsEqFun(T;eq)


Proof




Definitions occuring in Statement :  mk_dset: mk_dset(T, eq) dset: DSet eqfun_p: IsEqFun(T;eq) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mk_dset: mk_dset(T, eq) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a dset: DSet poset_sig: PosetSig set_car: |p| pi1: fst(t) set_eq: =b pi2: snd(t) prop:
Lemmas referenced :  bool_wf eqfun_p_wf set_car_wf set_eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_set_memberEquality dependent_pairEquality hypothesisEquality functionEquality lemma_by_obid hypothesis productEquality sqequalHypSubstitution isectElimination thin axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].    mk\_dset(T,  eq)  \mmember{}  DSet  supposing  IsEqFun(T;eq)



Date html generated: 2016_05_15-PM-00_04_07
Last ObjectModification: 2015_12_26-PM-11_28_57

Theory : sets_1


Home Index