Nuprl Lemma : set_prod_wf
∀[s,t:DSet].  (s × t ∈ DSet)
Proof
Definitions occuring in Statement : 
set_prod: s × t
, 
dset: DSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
set_prod: s × t
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
uimplies: b supposing a
, 
eqfun_p: IsEqFun(T;eq)
, 
infix_ap: x f y
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk_dset_wf, 
set_car_wf, 
eq_pair_wf, 
dset_wf, 
assert_of_eq_pair, 
assert_wf, 
assert_witness, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_functionElimination
Latex:
\mforall{}[s,t:DSet].    (s  \mtimes{}  t  \mmember{}  DSet)
Date html generated:
2016_05_15-PM-00_05_47
Last ObjectModification:
2015_12_26-PM-11_27_38
Theory : sets_1
Home
Index