Nuprl Lemma : set_prod_wf

[s,t:DSet].  (s × t ∈ DSet)


Proof




Definitions occuring in Statement :  set_prod: s × t dset: DSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  set_prod: s × t uall: [x:A]. B[x] member: t ∈ T dset: DSet uimplies: supposing a eqfun_p: IsEqFun(T;eq) infix_ap: y uiff: uiff(P;Q) and: P ∧ Q prop: implies:  Q
Lemmas referenced :  mk_dset_wf set_car_wf eq_pair_wf dset_wf assert_of_eq_pair assert_wf assert_witness equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality setElimination rename hypothesisEquality hypothesis lambdaEquality productElimination independent_pairEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality independent_functionElimination

Latex:
\mforall{}[s,t:DSet].    (s  \mtimes{}  t  \mmember{}  DSet)



Date html generated: 2016_05_15-PM-00_05_47
Last ObjectModification: 2015_12_26-PM-11_27_38

Theory : sets_1


Home Index