Nuprl Lemma : assert_of_eq_pair
∀[s,t:DSet]. ∀[a,b:|s| × |t|].  uiff(↑(a =b b);a = b ∈ (|s| × |t|))
Proof
Definitions occuring in Statement : 
eq_pair: a =b b
, 
dset: DSet
, 
set_car: |p|
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_pair: a =b b
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
dset: DSet
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
bfalse: ff
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
guard: {T}
Lemmas referenced : 
assert_wf, 
eq_pair_wf, 
assert_witness, 
equal_wf, 
set_car_wf, 
dset_wf, 
iff_transitivity, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_weakening_uiff, 
assert_of_band, 
pi1_wf, 
pi2_wf, 
uiff_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
cumulativity, 
universeEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality
Latex:
\mforall{}[s,t:DSet].  \mforall{}[a,b:|s|  \mtimes{}  |t|].    uiff(\muparrow{}(a  =\msubb{}  b);a  =  b)
Date html generated:
2017_10_01-AM-08_13_18
Last ObjectModification:
2017_02_28-PM-01_58_02
Theory : sets_1
Home
Index