Nuprl Lemma : assert_of_eq_pair

[s,t:DSet]. ∀[a,b:|s| × |t|].  uiff(↑(a =b b);a b ∈ (|s| × |t|))


Proof




Definitions occuring in Statement :  eq_pair: =b b dset: DSet set_car: |p| assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq_pair: =b b uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: implies:  Q dset: DSet pi1: fst(t) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  pi2: snd(t) bfalse: ff infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B squash: T true: True guard: {T}
Lemmas referenced :  assert_wf eq_pair_wf assert_witness equal_wf set_car_wf dset_wf iff_transitivity infix_ap_wf bool_wf set_eq_wf eqtt_to_assert assert_of_dset_eq iff_weakening_uiff assert_of_band pi1_wf pi2_wf uiff_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis extract_by_obid equalityTransitivity equalitySymmetry independent_functionElimination productEquality setElimination rename because_Cache addLevel independent_pairFormation independent_isectElimination lambdaFormation unionElimination equalityElimination dependent_functionElimination applyEquality lambdaEquality cumulativity universeEquality imageElimination natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality

Latex:
\mforall{}[s,t:DSet].  \mforall{}[a,b:|s|  \mtimes{}  |t|].    uiff(\muparrow{}(a  =\msubb{}  b);a  =  b)



Date html generated: 2017_10_01-AM-08_13_18
Last ObjectModification: 2017_02_28-PM-01_58_02

Theory : sets_1


Home Index