Nuprl Lemma : eq_pair_wf
∀[s,t:DSet]. ∀[a,b:|s| × |t|].  (a =b b ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq_pair: a =b b
, 
dset: DSet
, 
set_car: |p|
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
eq_pair: a =b b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
pi2: snd(t)
, 
bfalse: ff
, 
infix_ap: x f y
, 
prop: ℙ
Lemmas referenced : 
infix_ap_wf, 
set_car_wf, 
bool_wf, 
set_eq_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
equal_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
productElimination, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
productEquality, 
isect_memberEquality
Latex:
\mforall{}[s,t:DSet].  \mforall{}[a,b:|s|  \mtimes{}  |t|].    (a  =\msubb{}  b  \mmember{}  \mBbbB{})
Date html generated:
2017_10_01-AM-08_13_15
Last ObjectModification:
2017_02_28-PM-01_57_23
Theory : sets_1
Home
Index