Nuprl Lemma : eq_pair_wf

[s,t:DSet]. ∀[a,b:|s| × |t|].  (a =b b ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq_pair: =b b dset: DSet set_car: |p| bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Definitions unfolded in proof :  eq_pair: =b b uall: [x:A]. B[x] member: t ∈ T dset: DSet pi1: fst(t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a pi2: snd(t) bfalse: ff infix_ap: y prop:
Lemmas referenced :  infix_ap_wf set_car_wf bool_wf set_eq_wf eqtt_to_assert assert_of_dset_eq equal_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis productElimination hypothesisEquality lambdaFormation unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality productEquality isect_memberEquality

Latex:
\mforall{}[s,t:DSet].  \mforall{}[a,b:|s|  \mtimes{}  |t|].    (a  =\msubb{}  b  \mmember{}  \mBbbB{})



Date html generated: 2017_10_01-AM-08_13_15
Last ObjectModification: 2017_02_28-PM-01_57_23

Theory : sets_1


Home Index